Tuesday, 31st October 2017, 1:21 - 1:29 pm, Presentation Theater 4 Colorado Convention Center, Denver

MeRes100 – BRS Science and Clinical Update *Six Months* Primary Endpoint of *MeRes-1 Extend* Study

Sasko Kedev

MD, PhD, FESC, FACC

On Behalf of MeRes-1 Extend Investigators

Disclosure Statement of Financial Interest

I, Sasko Kedev, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Background

BRS are now a reality in the treatment of coronary artery disease. First gen BRS are not ' user friendly device ' and hence difficult to apply to the real world patient population

- Thick struts, high profile
- Special tips and tricks of implantation
- Limited expansion characteristics
- Limited accessibility to side branches
- Low radiopacity
- Uncertain radial strength
- Concerns regarding scaffold thrombosis
- Limited sizes of lengths and diameters

NEXT GENERATION Devices Are Needed!

MeRes100 – BRS Architecture

MeRes100 – BRS Strut Thickness & Crossing Profile

OCT images courtesy of Dr. Daniel Chamié, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil. Data on file with Meril Life Sciences Pvt. Ltd.

MeRes100 – Radiopacity

- Enhanced visibility. Gives a sense of virtual tubing. High operator comfort.
- Couplets of Tri-Axial RO markers (Pt) at either end of the scaffold

Data on file Meril Life Sciences Pvt. Ltd.

MeRes100 – Global Clinical Program

1-2. Achieved Primary Objective 3-6. Planning phase.

tct2017

MeRes-1 One Year Results Seth A. et al. EuroIntervention 2017;13:415-423

MeRes100 – 1 year Safety & Efficacy

- 0.93% MACE (1 case of TLR) 1-year
- 0% Scaffold Thrombosis 1-year
- 0.15 ± 0.23 mm LLL at 6-months
- Sustained data across OCT/IVUS/CT over 1Y

First-in-human evaluation of a novel poly-L-lactide based sirolimus-eluting bioresorbable vascular scaffold for the treatment of de novo native coronary artery lesions: MeRes-1 trial

Ashok Seth^{1*}, FRCP, D.Sc; Yoshinobu Onuma^{2,3}, MD, PhD; Ricardo Costa⁴, MD, PhD; Praveen Chandra⁵, MD, DM; Vinay K. Bahl⁶, MD, DM; Cholenahally N. Manjunath⁷, MD, DM; Ajaykumar U. Mahajan⁸, MD, DM; Viveka Kumar⁹, MD, DM; Pravin K. Goel¹⁰, MD, DM; Gurpreet S. Wander¹¹, MD, DM; Mathew S. Kalarickal¹², MD, DM; Upendra Kaul¹³, MD, DM; V.K. Ajit Kumar¹⁴, MD, DM; Pratap C. Rath¹⁵, MD, DM; Vijay Trehan¹⁶, MD, DM;

Gunasekaran Sengottuvelu¹², MD, DM; Sundeep Mishra⁶, MD, DM; Alexandre Abizaid⁴, MD, PhD; Patrick W. Serruys¹⁷, MD, PhD

The authors' affiliations can be found in the Appendix paragraph.

GUEST EDITOR: Davide Capodanno, MD, PhD; Cardio-Thoracic-Vascular Department, Ferrarotto Hospital, University of Catania, Catania, Italy

CLINICAL RESEA

MeRes-1 Extend Study Design

First-in-man safety and efficacy in patients with single, de-novo coronary lesion (in up to 2 vessels) treated by a single MeRes100 scaffold up to 24mm length

Clinical follow-up					
N = 64	30-day	6-months	1-year	2-years	3-years
*QCA, OCT follow-up					
Clinical follow-up	64	64	64	64	64
Angiographic follow-up	-	32	-	32	-
OCT follow-up		24			24
Diameters - 2.75, 3.00, 3.50 mm Length - 19, 24 mm					
PI Core Labs Angiographic OCT Data Management CRO	 Dr. Alexandre Abizaid, Dante Pazzanese, Sao Paulo Cardiovascular Research Center, Sao Paulo, Brazil Cardialysis, Rotterdam, The Netherlands JSS, New Delhi, India 				

MeRes-1 Extend Sites & Status

* Site not initiated for enrolment.

MeRes-1 Extend Key Eligibility Criteria

Key Inclusion Criteria

- Age >18 years
- Maximum 2 lesions in native coronary arteries (1 lesion/vessel)
- Reference vessel diameter 2.75-3.50mm
- Lesion length \leq 20 mm
- Stenosis ≥ 50% & < 100%. TIMI ≥ 1
- Type A/B1 lesions

Key Exclusion Criteria

- Acute MI <7 days of Tx
- History of PCI or CABG
- LVEF ≤ 30%
- Ostial lesion (within 3mm)
- Lesion location in left main
- Lesion within 2m of origin of LAD, LCX
- Moderate to severe calcification, aneurysm
- Bifurcation, Side branch >2mm in diameter
- Extreme tortuosity, angulation ≥ 90°
- Creatinine \geq 1.3 mg/dL

Major Study Endpoints

• Safety

- Primary Endpoint:
 - MACE at 6-months (Cardiac death, MI, ID-TLR, ID-TVR)
- Secondary Endpoints:
 - Device & procedure success
 - Scaffold thrombosis (ARC defined)

• Efficacy

- QCA: Late lumen loss (in-scaffold / in-segment)
- OCT: minimum lumen area (flow area), NIH area

MeRes-1 Extend – Demographics

Variable	N = 64	
Age, years (mean ± SD)	59.1 ± 9.0	
Male	69% <mark>-</mark>	
Current Smoker	5%	
Diabetes mellitus	25%	
Dyslipidemia	46%	
Hypertension	80%	
Myocardial Infarction (> 7days)	28%	
Clinical presentation		
- Stable Angina	41%	
- Silent Ischemia	58%	
LVEF, % (mean ± SD)	59.1 ± 8.6	

MeRes-1 Extend – Lesion Characteristics

Variable	64 pts 69 lesions	
LAD LCx RCA	62% 20% 18%	
Calcification: none or mild moderate severe	65% 3% 1%	
Tortuosity: moderate severe	8% 0%	
Lesion class: A B1 B2 C	36% 43% 19% 2%	
Baseline TIMI 3 flow	91%	
Lesions per patient	1.06 ± 0.27	
Nominal scaffold diameter: 2.75 3.0 3.5 mm	12% 45% 43%	
Nominal scaffold length: 19 24 mm	55% 45%	
High pressure postdilatation	100%	
Device Procedure success	100% 97%*	

*One patient received a metal DES to cover a proximal dissection during post dilatation. *One patient received a metal DES to cover a distal dissection during post dilatation.

Primary Clinical Endpoint at 6-months

100% monitored

Primary Endpoint MACE, n (%)	In-Hospital N = 64 (100%)	1-month N = 64 (100%)	6-months N = 64 (100%)
MACE	0 (0%)	0 (0%)	1 (1.56%)
Cardiac Death	0 (0%)	0 (0%)	0 (0%)
Myocardial Infarction@	0 (0%)	0 (0%)	0 (0%)
Ischemia-driven TLR	0 (0%)	0 (0%)	1 (1.56%)
Ischemia-driven TVR	0 (0%)	0 (0%)	0 (0%)
Scaffold Thrombosis ^{\$}	0 (0%)	0 (0%)	0 (0%)
Non-cardiac death	0 (0%)	0 (0%)	0 (0%)

QCA Analysis – All Patients

Angiographic Analysis (QCA)	Baseline N = 64	Post-procedure N = 64
Lesion length (mm)	13.97	-
(In-)segment RVD (mm)	3.03	3.06
In-scaffold RVD (mm)		3.09
(In-)segment MLD (mm)	1.15	2.62
In-scaffold MLD (mm)	- -	2.73
In-segment acute gain (mm)		1.47
In-scaffold acute gain (mm)		1.58
(In-)segment DS (%)	62.1	14.4
(In-)scaffold DS (%)		11.6

QCA Analysis – Angio Subset

Angiographic Analysis (QCA)	Baseline N = 32	Post-procedure N = 32	6-months N = 32
Lesion length (mm)	13.79	-	-
(In-)segment RVD (mm)	3.01	3.08	3.04
In-scaffold RVD (mm)	_	3.12	3.06
(In-)segment MLD (mm)	1.05	2.63	2.46
In-scaffold MLD (mm)		2.74	2.56
In-segment acute gain (mm)		1.58	
In-scaffold acute gain (mm)		1.69	
(In-)segment DS (%)	63.4	14.7	18.9
(In-)scaffold DS (%)	-	11.7	16.5

tct2017

Angiographic Core Lab – CRC, Sao Paulo, Brazil. Dr. Ricardo Costa & Dr. Alexandre Abizaid

CFD Curve for Late Lumen Loss at 6-Months FU

In-Scaffold Late Lumen Loss

2

Core Lab Quantitative Assessment of OCT

N = 21	Post-procedure	6-months
Mean Flow area (mm ²)	6.70±1.67	6.04±1.81
Minimum Flow area (mm ²)	5.25±1.33	4.23±1.19
Mean Abluminal Scaffold area (mm ²)	7.41±1.68	7.56±1.79
Minimum Abluminal Scaffold area (mm ²)	6.12±1.50	5.91±1.44
Mean neointimal area (on top & in-between struts) (mm ²)		1.47±0.52
Neointimal thickness (mm)		0.03±0.05
% Covered struts		97.95±3.69

07-004

POST

4.56

Mean LA

(mm²)

D'

Minimum LA 3.52 3.22 (mm²) Mean SA 4.80 5.20 (abluminal) (mm²) **Minimum SA** 3.92 4.43 (abluminal) (mm²) Neointimal area 0.73 (abluminal) (mm^2)

* side branch

A'

MeRes100 Over Expansion

Baseline OCT

Patient History

- 62Y/Female
- Stable Angina Class II
- Family history of CAD
- Previous MI >3months
- Smoker
- Diabetic Type II
- Hypertensive

Treatment Details

- Dt. of Tx 8-Apr-2017
- Proximal LAD
- MeRes100 3.50x19
- Post-dil 3.20x20 @ 30 atm
- 4.50x15 @ 26 atm;
- 5.00x10 # 12 atm

Follow-up Details

- No MACE, no ST
- Follow-up angio/OCT 6-months

Videos courtesy Dante Pazzanese, Brazil

MeRes100 Over Expansion

6-months follow-up

- Fully patent vessel and scaffolded segment
- Positive remodeling of the lesion site
- Completely endothelialized struts
- No malapposition

017

- No strut fracture despite dilatation with 5.00 mm NC balloon
- Strong evidence of early degradation of struts

Conclusions

- MeRes-I Extend trial evaluating the 2nd generation MeRes100 BRS with 100 micron struts demonstrated high acute success and low MACE (1, 1.5%) IDTLR & 0% scaffold thrombosis up to 6-months.
- Serial QCA analysis demonstrated relatively low late lumen loss (0.18±0.31 mm), suggesting high efficacy on inhibiting NIH at late follow-up
- OCT subset analyses demonstrated sustained mean flow area and virtually complete strut coverage (98.0%)

MeRes100 – Forthcoming Clinical Trials

- The encouraging results of MeRes-1 study provide the basis for further studies, using a wider range of lengths and sizes in more complex and larger patient population.
- 1:1 Randomized pivotal trial of MeRes100 vs Xience (N = 484) has been initiated in China:
 - PI: Prof. Gao Runlin
 - 20 Clinical sites
 - 100% QCA follow-up and 20% population with OCT follow-up
- MeRes-Evolve RCT N=800 work has been initiated in India, Europe, Asia, Latin America, Middle East, Africa

