Defining the Technical Needs of Second Generation BRS: Lessons Learned from the Absorb BVS Program

Gregg W. Stone, MD

Columbia University Medical Center NewYork-Presbyterian Hospital Cardiovascular Research Foundation

Disclosures

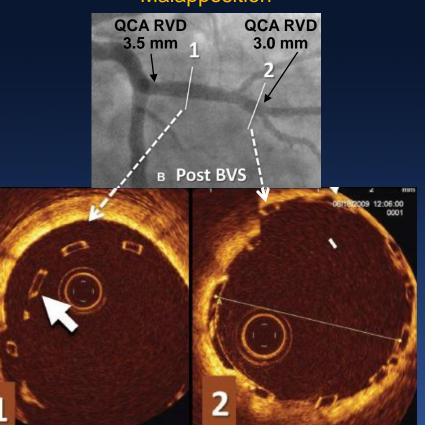
- Chairman of the ABSORB global clinical trial program (uncompensated)
- Consultant to Reva, Inc.

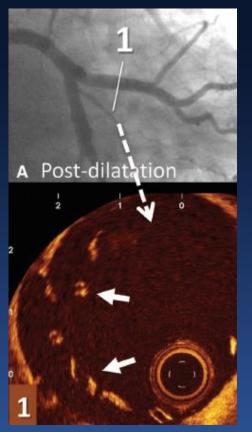
Causes of Absorb BVS Failure

- 1. Mechanisms common to metallic DES (but which may be more frequent with BVS)
 - Under-expansion (small MSA)
 - Edge issues (dissection, residual disease)
 - Geographic miss
 - Coverage of side-branches
 - Slow and/or incomplete endothelialization
 - Neoatherosclerosis

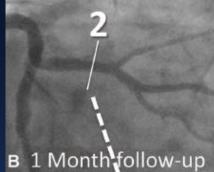
2. Mechanisms unique to BVS

- Acute fracture
- Chronic recoil
- Late intraluminal scaffold dismantling (ILSD)
 - predisposed to by acute malapposition


Many of these may be impacted by suboptimal technique

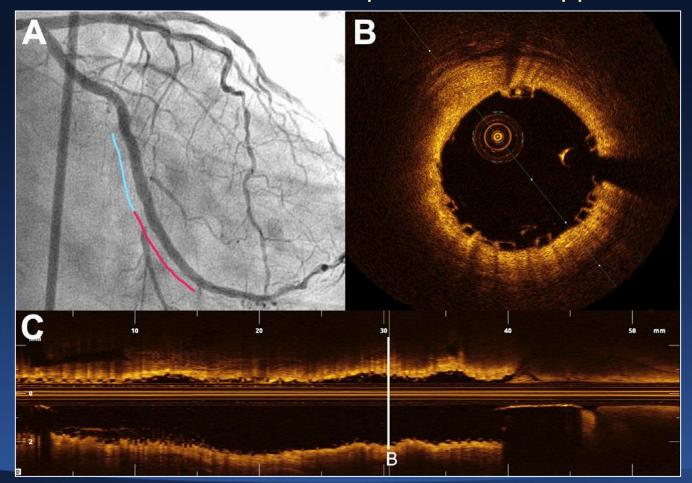

Acute Scaffold Fracture

3.0 x 18 mm BVS after post-dil with 3.25 mm NC balloon at 24 atm.


Malapposition

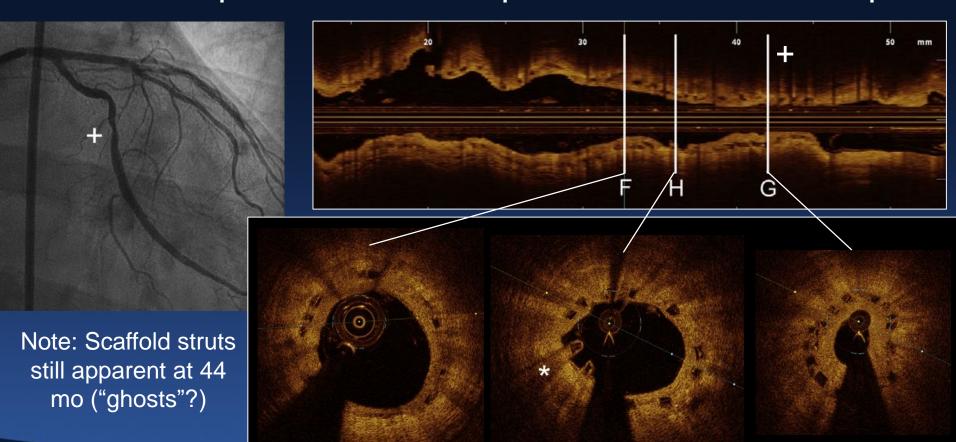
Post-dil with 3.5 mm
compliant balloon at 16
atm (expected 4.0 mm).
Fracture

Unstable angina at 1 month;
Treated with metallic DES



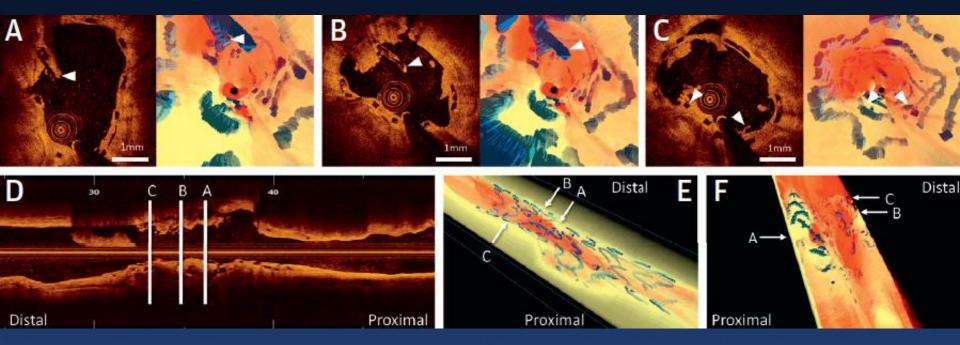
Very Late Absorb Restenosis Chronic recoil

LCX treated with 2 BVS (3.0 x 18 mm and 2.5 x 28 mm), post-dilated with 3.0-mm NC balloon. Full expansion, well apposed struts.



Very Late Absorb Restenosis Chronic recoil

44 months later unstable angina; focal LCX restenosis Neointimal proliferation with proximal scaffold collapse



Very Late Absorb Thrombosis

Intraluminal scaffold dismantling

Minimal intimal hyperplasia. Main findings are breaks in the scaffold structure with malapposition and luminal encroachment (intraluminal scaffold dismantling – ILSD), and thrombus

ABSORB PSP Analysis

Pre-specified Definitions of Optimal PSP Technique

- Pre-dilatation: Performed in all lesions with a balloon to QCA-RVD ratio ≥1:1
- Sizing: QCA-RVD ≥2.25 mm ≤3.75 mm for all treated lesions
- Post-dilatation: Performed with a non-compliant balloon at ≥18 atm. and with nominal diameter larger than the nominal scaffold diameter, but not >0.5 mm larger

Performance of Optimal PSP Technique in 5 ABSORB studies

Featured Clinical Research

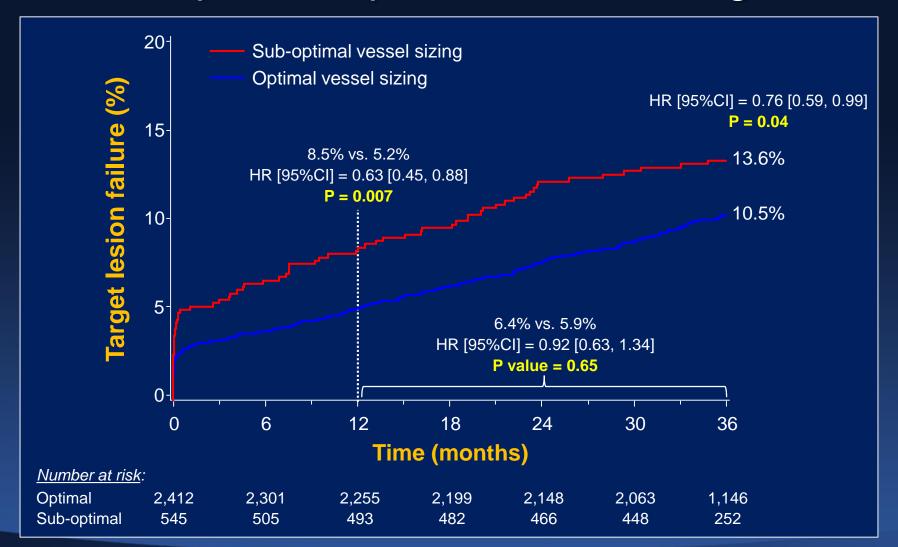
Mile High Ballroom 1A-1B Today, 12:45 PM – 12:55 PM

Stone GW et al. JACC 2017:on-line

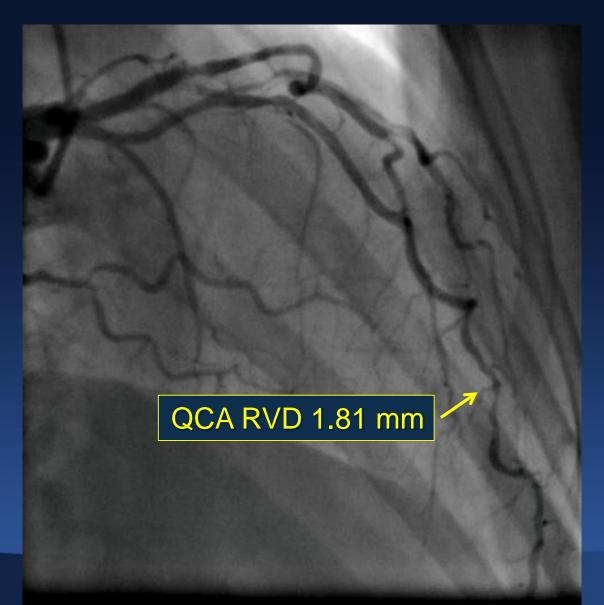
¹Performed in all lesions with a balloon to QCA-RVD ratio ≥1:1; ²QCA-RVD ≥2.25 mm - ≤3.75 mm for all treated lesions; ³Performed with a non-compliant balloon at ≥18 atm. and with nominal diameter larger than the nominal scaffold diameter, but not >0.5 mm larger

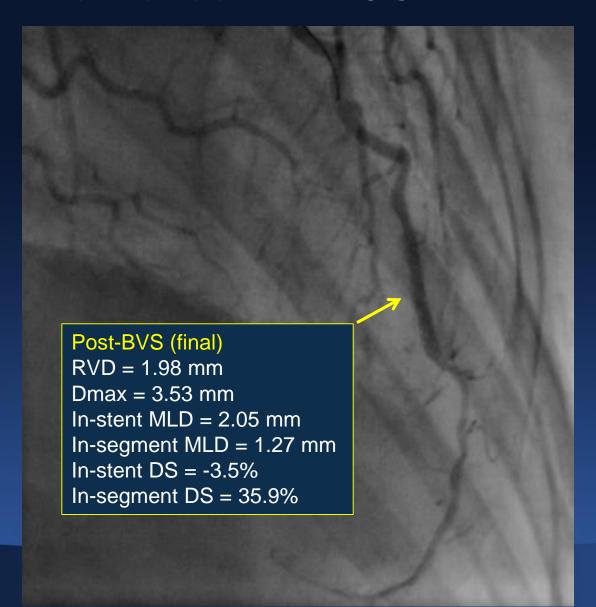
Performance of Optimal PSP Technique in 5 ABSORB studies

	<u>Lesions</u> (n=3,149)	<u>Patients</u> (n=2,973)
• Pre-dilatation:1	60.1%	59.2%
• Sizing: ²	82.3%	81.6%
• Post-dilatation:3	12.7%	12.4%
• All PSP	5.0%	4.9%

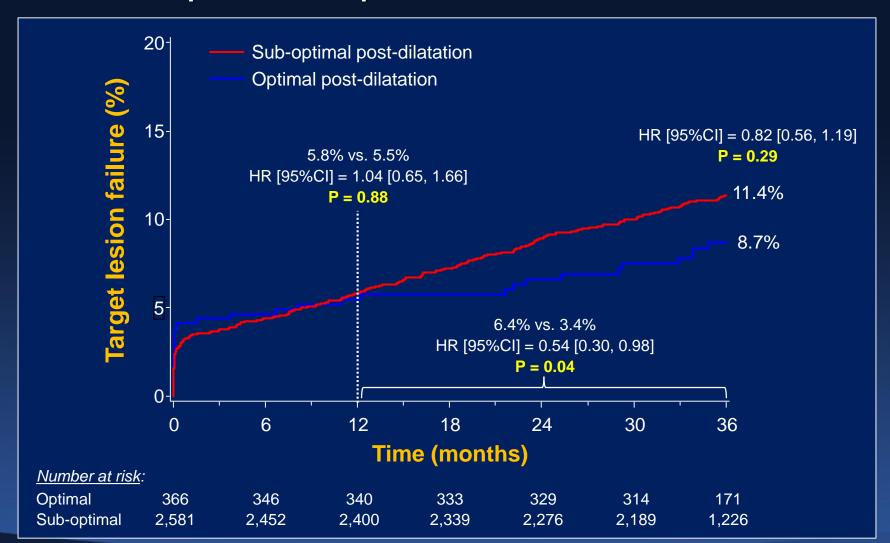

¹Performed in all lesions with a balloon to QCA-RVD ratio ≥1:1; ²QCA-RVD ≥2.25 mm - ≤3.75 mm for all treated lesions; ³Performed with a non-compliant balloon at ≥18 atm. and with nominal diameter larger than the nominal scaffold diameter, but not >0.5 mm larger

Target Lesion Failure Impact of Optimal Vessel Sizing

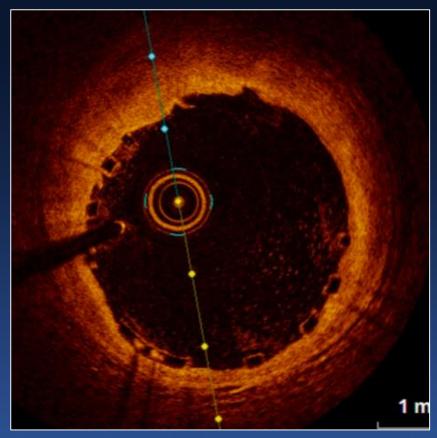


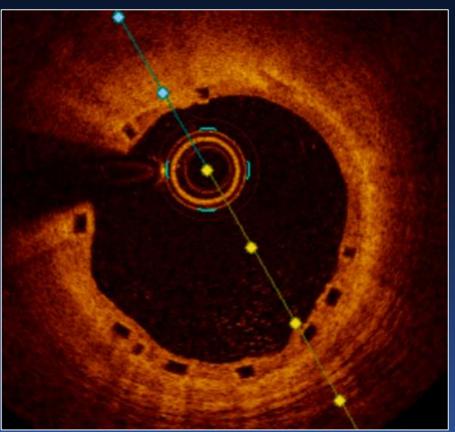

Example: Very small vessel enrolled in ABSORB III

Example: Very small vessel enrolled in ABSORB III



Target Lesion Failure Impact of Optimal Post-dilatation

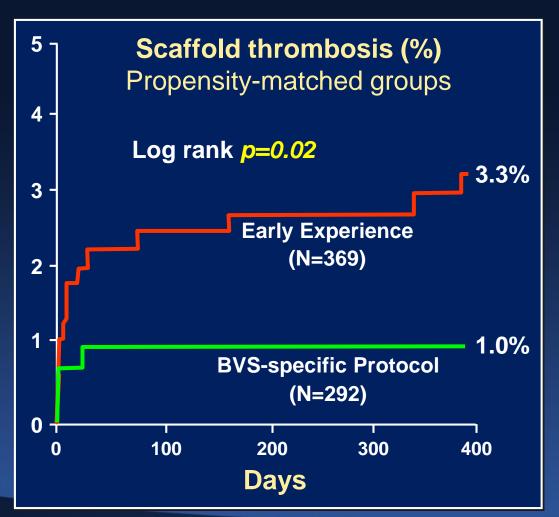


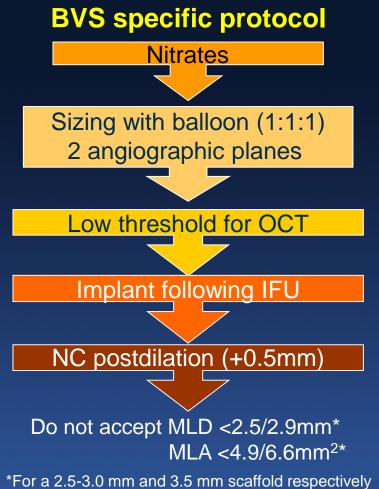

Preventing Acute Malapposition by Proper Sizing and High-Pressure Post-Dilatation Should Reduce Very Late Scaffold Thrombosis

Immediate post-implant

69 days post-implant

Complete apposition


Complete strut coverage



Reduction in Absorb Scaffold Thrombosis with Improved Technique

At 4 German and Swiss centers

Absorb Milan Experience*

May 2012 - August 2016: 340 pts, 518 lesions

1.5 target lesions/pt B2/C lesions 76.1%

Bifurcation lesions 46.1%; severely calcified lesions 22.6% 1.5 scaffolds/lesion

BVS length 35 ± 19 mm/lesion, 54 ± 34 mm/pt Use of 2.5 mm BVS 33.0%/lesion, 44.7%/pt

Technique

Pre-dilatation	97.1%	
- Scoring/cutting/RB	16.4%	
Post-dilatation with NC balloon	99.8%	
- Pressure, atm mean	21.0 ± 4.3	
- Balloon/scaffold diameter ratio	1.03 ± 0.09	
IVUS or OCT	86.1%	
- Further interventions based on imaging	23.6%	7

Absorb Milan Experience May 2012 - August 2016: 340 pts, 518 lesions

FU 98.2% of pts at median 665 days (IQR 340 - 1017)

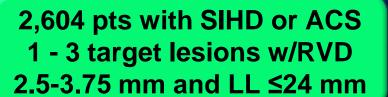
Scaffold thrombosis (def/prob):
4 cases (1.2%)

1 Acute (day 0)

1 Subacute (day 3)

2 Late (day 63, day 146)

O Very late



ABSORB IV: Trial Design

NCT01751906

Compared to ABSORB III:

Troponin pos ACS, thrombus and 3 lesions included

ABSORB BVS N=1,296 BVS technique:

Randomize 1:1

Stratified by diabetes and ABSORB III-like vs. not

Pre-dil: 1:1; NC balloon recommended Sizing: IV TNG; QCA/IVUS/OCT strongly recommended if visually estimated RVD ≤2.75 mm and 2.5 mm device intended; <2.5 mm ineligible!

Xience EES N=1,308

Post-dil: 1:1, NC balloon, ≥16 atm strongly recommended

DAPT for ≥12 months

Clinical/angina follow-up: 1, 3, 6, 9, 12 months, yearly through 7-10 years SAQ-7 and EQ-5D: 1, 6, 12 months and 3 and 5 years

Cost-effectiveness: 1, 2, and 3 years

Primary endpoints: TLF at 30 days; TLF between 3 and 7-10 yrs (pooled with AIII)

Secondary endpoints: TLF at 1 year; angina at 1 year

ABSORB BVS

N=1,296

ABSORB IV: Trial Design

NCT01751906

2,604 pts with SIHD or ACS

1 - 3 target lesions w/RVD

2.5-3.75 mm and LL ≤24 mm

Randomize 1:1

Stratified by diabetes and ABSORB III-like vs. not

BVS technique:

Pre-dil: 1:1: NC balloon recommended Sizing: IV TNG; QCA/IVUS/OCT strongly recommended if visually estimated RVD ≤2.75 mm

and 2.5 mm device intended; <2.5 mm ineligible!

Post-dil: 1:1, NC balloon, ≥16 atm strongly recommended

Compared to ABSORB III:

Troponin pos ACS, thrombus and 3 lesions included

Xience EES N=1,308

Late Breaking Trial

Main Arena

Today 11:20 AM — 11:35 AM

Conclusions

- In the randomized trials completed to date, ABSORB BVS resulted in increased rates of early and late adverse events compared to XIENCE CoCr-EES (in particular device thrombosis and TV-MI)
- This increased risk may be attributed to complications arising from limitations of the scaffold (some common to all DES, but some unique to BRS), as well as suboptimal technique
- Next generation BRS (thinner struts, enhanced expansion characteristics) implanted with optimal technique offer the potential for comparable early and intermediate-term outcomes compared to contemporary metallic DES (prior to complete bioresorption), with improved long-term event-free survival

